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Matrix Syntax 
Roger Martin, Román Orús & Juan Uriagereka 
 

1. Preliminaries focusing on the Trouble with Chains 
 

While it may not be necessary for any analytical science to be quantitative in order to 
be taken seriously, gaining quantitative traction—if natural within a discipline’s subject 
matter—can be an advantage. This is because of the rigor one can associate to 
calculations, but more generally because the level of predictions and accuracy of testing 
can gain a different scope. Our project can be seen, in practical terms, as a way to 
implement that desideratum within well-known parameters. 

 
Our project stems from generative grammar and the Computational Theory of Mind, 

and as such it is deeply concerned with the nature of lexical categories, phrases, various 
sorts of merge, Agree, displacement, chains, control, ellipsis, rules of construal and other 
such notions that have arisen from a long tradition of theoretical investigations into the 
structure of the human language faculty. All the machinery that, in particular, the 
Minimalist Program uses constitutes our basic repository. 

 
At the same time, within a specifically minimalist approach, we worry about long-

range correlations and how best to tackle them. Perhaps the most obvious such concern is 
the very notion grammatical transformation, which we presuppose. Paramount among 
the issues that these devices create is the fact that their interpretation is distributed (both 
in phonetic and semantic terms). Much discussion over the years—as well as posturing—
has gone over how to interpret that. In short, we don’t know how to, not in classical 
computational terms (and see Colins & Stabler 2016 for essentially the same admission). 
 

Consider for instance the situation in (1):  
 
(1)  Friends of each otheri seemed to the Obamas ti to appear to the Bushes ti to have 

shown up unannounced at the White House. 
 

A. Friends of Barack seemed to Michelle and friends of Michelle seemed to Barack to 
appear to the Bushes to have shown up unannounced at the White House.  

B. Friends of George W. seemed to the Obamas to appear to Laura, and friends of 
Laura seemed to the Obamas to appear to George W., to have shown up 
unannounced at the White House. 
 

Both of the interpretations of (1) in A and B are possible, which is represented by 
assuming that “movement” (of friends of each other) creates “copies”, in bold as in (2): 
 

(2) Friends of each other seemed to the Obamas friends of each other to appear to 
the Bushes friends of each other to have shown up unannounced. 

 
The different interpretations in (1) can be said to correspond to the interpretation of 
different “copies” in (2), as in (3), where here the “copy” that is interpreted is still in bold 
and the others are in strikethrough. (3a) yields interpretation (1A) and (3b) that in (1B): 
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(3) a. Friends of each other seemed to the Obamas friends of each other to appear to   
    the Bushes friends of each other to have shown up unannounced. 
b. Friends of each other seemed to the Obamas friends of each other to appear to  
    the Bushes friends of each other to have shown up unannounced. 
c. Friends of each other seemed to the Obamas friends of each other to appear to  
    the Bushes friends of each other to have shown up unannounced. 

 
However, many questions now arise. First, it is not clear why only one “copy” can 

survive at PF, and furthermore why this should correspond to the representation in (3c)—
we cannot have PFs like (3a-b), even when the LF takes one of these guises—where the 
bold “copy” is pronounced and the strikethroughs necessarily unpronounced. What about 
on the LF side? Is there a valid interpretation for the chain if no strikethrough is 
involved? If so, arguably the unacceptable (4a) should be possible with an LF like (4b): 
 

(4) a. * Friends of each other seemed to themselves to have shown up unannounced. 
b. [IP [friends of each other]i seemed to themselvesi [IP [friends of each otheri]i to 
      have shown up unannounced]]  

 
Thus, to prevent (4), we must make the further assumption that only one of the “copies” 
can be interpreted at LF. But that isn’t any more obvious than why only one of the 
“copies” can be pronounced at PF. One can of course stipulate all of that—but the 
question is why the chain behaves that way and not in other equally rational ways.  
 

Although there is useful terminology that distinguishes lexical types and their tokens, 
from occurrences thereof, where technically a chain is a set of occurrences spanning over 
two or more grammatical contexts, no formalism we know of yields that as a 
straightforward consequence. A context-free grammar is good at capturing that 
type/token distinction, by way of non-terminals such as P, or equivalently a labeling 
mechanism as in [P from], shorthand for [from from], where the sub-index label denotes the 
type and the italicized expression presents the token to be inserted in grammatical 
contexts. Unfortunately, however we choose to make this precise, it doesn’t help us 
understand what occurrences amount to.   

 
We argue that chains are non-classical objects, of the sort commonly assumed in 

physics, exhibiting conditions that are often described as “spooky”. We are not the first to 
bring such notions into the discussion of language. For example, Paul Smolensky 
(Smolensky 1990; Smolensky & Legendre 2006) has argued for something along these 
lines for phonology and other parts of language—although within connectionist 
presuppositions that we do not find necessary. In other domains of cognitive science too, 
researchers of various orientations have suggested “spooky” connections. 

 
We assume linguistic information, to use Randy Gallistel’s felicitous phrase, is 

carried forward in derivational time, represented as digital signals of some sort (Gallistel 
2006). However, those representations, in our view, are what PF and LF tokens are all 
about, not the way things exist at a more elementary level. That bedrock is, we think, 
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syntactic. We will be taking syntax to act on some Hilbert space, by way of linear 
operations. Moreover, projecting syntactic stuff into interface observables is what 
“collapses it” into a classical reality, in which entities present reference and 
quantification, truth values, or for that matter the very signals of speech or writing are 
linearized one right after the other. That is our project in a nutshell. 

 
None of this really makes sense without quantitative assumptions, or at least elaborate 

logical assumptions. Some researchers have attempted the latter, which we sympathize 
with. We think there may be a simpler way of proceeding, stemming from a fact that is 
familiar to most linguists: we operate on feature matrices. We would like to show next 
that it is easy to translate back-and-forth between familiar phrase-markers and matrices, 
and moreover that connatural to the latter, if their values are numerical, are very 
interesting quantities that turn out to be central, both, to a project attempting to construct 
relevant Hilbert spaces and, more generally, turn quantitative. 
 
 
2. Medeiros Matrices 
 
Medeiros (2012) shows how to map Lindenmayer-systems to a matrix. For instance, the 
Fibonacci system in (5a) with the tree in (5b) maps to the matrix in (5c) with the 
characteristic polynomial in (5d), whose roots (the matrix eigenvalues λ1 and λ2) indicate 
the overall distribution of the symbols with respect to one another: 
 

(5) a. 2! 1, 1 ! 2 1           b.                     c.           d.   x2 – x – 1 

                                                                                           
The general method for translating between rewrite rule systems as in (5a) and matrices is 
as follows. For a rewrite system over n symbols, one first chooses a way to associate the 
n symbols to integers 1 through n. (In (5), those very symbols, 1 through 2, are used to be 
the rewrite symbols.) Next one records the system as a matrix, where the number in the ith 
row and jth column counts the number of symbols of type j occurring to the right side of 
the rewrite rule for type i. Then we record a derivational line as a vector, with number of 
symbols of type i in the ith place. To get the subsequent derivational line, we multiply the 
vector by the matrix; the resulting vector counts the number of symbols of each type. 
 

The key is really to list in each row the number of 1’s, 2’s, or whatever symbols we 
are using. In (5c) above, for instance, the first row (which expands symbol 1) contains 
one one and one two, while the second row (expanding symbol 2) contains one one and 
no two’s. This is the general approach for any L-system of any complexity (with a finite 
number of rules). So for a system with rules  (6i) through (6n) we create the matrix in (6) 
(focus on the boldfaced expressions in (6), intended to be numerical): 
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(6)        

 
Matrices can be seen to act as linear operators on spaces, uniformly distorting them: 

turning the space upside down, around, stretching it, folding it, and more—the sorts of 
twists and turns, for example, that proteins take as they fold into the characteristic forms 
that distinguish one protein from the next. If linear operators are used to model protein 
folding, it is not crazy to consider how such operators might be implicated in the shaping 
of syntactic objects, such as chains, which obey c-command and locality conditions, or 
even the apparently mundane distinction between what acts as a noun phrase with 
reference or a verb phrase without.  
 

Why matrices? First, because they’re there! Whereas it took a revolution in physics, 
coming from the world of motion and waves, to re-conceptualize matters in terms of 
matrices, modern linguistics basically starts in matrices, due to seminal work on 
phonological feature matrices, which Chomsky (1974) extended to syntax. Of course, one 
need not interpret matrices the way a mathematician does; one could think of them as 
mere lists of attributes with values, as in computer science. Then again, the tool exists for 
us to use, if we so desire. Second, because some matrices, like the ones Medeiros related 
to familiar trees, are not just ipso-facto numerical, but indeed very well behaved. 
 

Medeiros’s numbers come from a simple assumption related to the fact that a rewrite 
rule (the inverse of the standard merge procedure generalized to n-ary conditions) 
involves different tokens and types. Each such token can be counted, which yields a 
number. What is remarkable is that with such a simple assumption one can express a tree 
like (5b), as opposed to any other imaginable tree of arbitrary complexity. Moreover, note 
that Medeiros’ method yields a square matrix, as it contains the n symbols in the system, 
and for every such symbol whether the rewrite contains x many of its token 
instances. Square matrices are particularly symmetrical and thus easy to operate with.  
 

Note that a matrix like (5c) has a characteristic polynomial—as shown in (5d). All 
square matrices have characteristic polynomials, invariant for matrices under different 
bases (rotations of the matrix that keep their basic relations unchanged). Readers may 
remember that a polynomial is a collection of monomial terms KX, where constant K is 
the term’s coefficient and a root of the polynomial turns it to an equation; the root of 
polynomial P(z) is the number zj such that P(z)j = 0. We say that P(z) is of degree n if it 
has n roots, which can be thought of as its degrees of freedom. The characteristic 
polynomial of a matrix can be thought of as essentially its ID number. When the 
polynomial is turned into an equation, the solutions to that equation constitute key 
elements in the matrix diagonal, called eigenvalues—which is again what (5d) shows. 
Note that the eigenvalues in (5d) are ϕ, the golden ratio, and its negative inverse.  
 



	 5	

There are many important calculations one can run with eigenvalues. Consider, for 
instance, what is customarily called in symbolic dynamics the topological entropy of a 
dynamical system ht (note that here we are referring to the mathematical concept of 
topological entropy, as opposed to topological entropy in physics; see Ott 1993). This a 
real number measuring the system’s “complexity”, in the sense that periodic orbits in a 
dynamical system are in one-to-one correspondence with characteristic derivational 
cycles in a corresponding symbolic system, so the two are topologically equivalent. For 
symbolic systems where a characteristic recursion is present (like the Fibonacci one in 
(5)), the topological entropy numerically captures the exponential growth of that 
periodicity within the system. The standard way to calculate a system’s derivational 
entropy ht, for a transition matrix M, is as in (7): 
 

(7) ht = log2 λmax, for λmax the largest eigenvalue of M. 
 

The largest eigenvalue of the matrix is chosen because it tracks the repeated 
multiplication (power) of the matrix, thus its iterative properties leading to its 
exponential growth. The logarithm is used just to get a rate. In our case, the transition 
matrix for our phrasal system is the Medeiros matrix in each instance—concretely, (5c) in 
the case we are now analyzing, pertaining to the Fibonacci tree in (5b). It should not be 
hard to see that this matrix’s largest eigenvalue (root of the polynomial) is ϕ, so the 
binary logarithm of that is the system’s topological entropy.  
 

Again, the Medeiros matrices represent the token number of symbols of a given type 
in a given iteration of an L-system (set of derivational lines that permit the characteristic 
recursion in the L-system to occur). One can call such an iteration in the actual derivation 
a cycle, although in other fields the term orbit is used. So, from this perspective, a 
Medeiros matrix tells us the essential type/token ratio for a derivational cycle/orbit, 
whose topological entropy is a real number like log2 ϕ. It goes without saying that we, 
then, need to establish what the topological entry of a derivational cycle entails for the 
derivation itself, clarifying issues like why it is a cycle to begin with, what sorts of 
objects are stable within that domain, or what to do with the domain, for instance, if the 
entropy becomes for some reason unstable—whether to transfer it out of the computation 
or remedy the derivational crisis in some operational way. 

 
We submit that clarifying such familiar matters (the nature of phases, conditions of 

phase stability, phase transfer, or what impels phase components to abandon a phase) are 
hardly trivial or resolved matters. Moreover, it is clear to us that unearthing a tool that is 
already there can only be helpful. Researchers may of course choose to ignore the tool. 
But we should be thankful to Medeiros for having found it, without doing any violence to 
the objects we normally operate with—he simply bothered to count.  
 
 
3. The Fundamental Assumption and Anti-symmetrical Merge 
 
We believe the topological entropy that Medeiros’s method allows us to calculate 
constitutes nothing short of a quantum number within the sort of system we are 
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attempting to build—clarifying for us fundamental aspects of Cinque and Rizzi’s (2008) 
cartographic program. Yet we think we need other such quantum numbers.  
 

Consider familiar objects as in (8), from Chomsky 1974.  
 

(8) a. noun:        [+N, -V] b. verb:           [-N, +V] 
c. adjective: [+N, +V]     d. adposition: [-N, -V] 

 
(8) capitalizes on a semantic intuition that “nouniness” is conceptually orthogonal to 
“verbiness”, and those two separate lexical dimensions articulate all of the conceptual 
space the lexicon needs. N and V features were postulated by Chomsky so as to 
rationalize the distribution of lexical categories. He could, of course, have called those 
features A and B, or 1 and i, and retain the system we customarily teach our students. 
Now, in the latter instance there would be one more level of precision: when we say that 
“intuitively N and V are cognitively orthogonal”, we could state that orthogonality in 
precise mathematical terms, inasmuch as 1 is mathematically orthogonal (maximally 
different) from i = √-1. There are, to be sure, many other mathematical orthogonalities 
one could postulate, but the one between 1 vs. i has the added advantage that it is easy to 
operate with such terms arithmetically.  
 

That being said, let’s make the following Fundamental Assumption: 
 

(9) Fundamental Assumption: N = 1 and V = i = √-1. 
 

(10) a. noun:       [1, -i]  b. verb:           [-1, i] 
c. adjective:  [1, i]           d. adposition: [-1, -i] 

 
Written as in (10), representations as in (9) may be seen as vectors. It is, moreover, 
convenient to translate the vectorial representations in (10) further—simply so as to 
operate with them more easily—to the square matrices in (11). 
 

(11) a.   noun:               b. verb:            

c. adjective:           d. adposition:  
 
Notice that the objects in (10) are placed in the matrix diagonal in (11). In this format, 
the matrices, which we call the Chomsky matrices, are said to be “diagonal” and 
“unitary”, which means they have the property of their inverse being identical to what is 
called their adjoint. Explaining that technically would take us too far afield, but suffice it 
to say that these are extremely elegant matrices, with mathematical properties that are 
well known. There are many other interesting properties that our matrices have, as they 
integrate into a curious mathematical group that will be discussed later on below.  
 

To ponder the value of the Chomsky matrices, consider major syntactic dependencies: 
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(12) a.   Nouns select PPs.         b. Verbs select NPs. 
            c.   Adjectives select PPs.  d. Prepositions select NPs. 

 
As generic statements, (12c) and (12d) are virtual universals, while (12a) and (12b) are 
statistically overwhelming. Of course, verbs also select other categories, which 
complicates a system that needs to invoke functional categories, but in science typically 
one starts by trying to predict the most basic interactions. In the case of language, we 
suppose that (12) is cognitively prior in that it is what learners get from Universal 
Grammar in the absence of experience, further complications being learnt. While the 
facts in (12) —together with the additional fact that, of all the major categories, it is 
nouns that appear in bare guise, without dependents, in the form of names and pronouns, 
etc.—are stipulated in many ways, we have never seen them explained.  
 

To provide an explanation for (12), we start with Chomsky’s matrices, plus the 
assumption that First Merge—the relation between a head and a complement—is matrix 
multiplication. Once one goes through the trouble of postulating the N vs. V distinction in 
numerical terms, it is natural to ask whether it may buy us more than formalizing the 
relevant orthogonality among the features. We can claim that such a multiplication is 
really a deformation of a given (conceptual) space by way of a linear operator, but we are 
sure that such an abstract reflection does not help the putative question of “Why matrix 
multiplication?” If readers are wondering just that, we cannot answer the question a 
priori; we can only show the results of taking such a step. 

 
We further assume the following about merge: 

 
(13) Merge is antisymmetrical. 

 
This is actually presupposed in an often-cited idea of Chomsky’s, namely, that Merge is 
literally the successor function in mathematics, represented as in (14): 
 

(14) a. ∅ = 0  b. {∅} = 1  c. {{∅}} = 2  d. {{∅}} = 3  ... n. {{{…{{{ ∅ }}}…}}} = n 
                                                                                             n     
 

In order to go from {∅} to {{∅}}, we need to merge {∅} with itself, in the process 
yielding {{∅},{∅}} = {{∅}}. Although it seems that this kind of symmetrical operation is 
generally disfavored in syntax, where typically atomic elements from the lexicon, 
compose with complex objects that have been previously assembled in the derivation, we 
can allow for this particular symmetrical situation, if we restrict it to self-merge. A 
relation that is asymmetrical except when holding with itself is called antisymmetrical. 
 

Again, anti-symmetry does allow for a symmetry condition for self-merge, which 
turns out to be important at the point of launching a derivation. This is because when the 
derivation starts, there are no “complex objects assembled” in it yet. One way to break 
this inevitable symmetry is to allow self-merger (of heads), an idea first proposed by Max 
Guimarães (2000) and later picked up by Kayne (2009). When considered from the point 
of view of the Chomsky matrices and Merge as multiplication, the result of self-merging 
any of the Chomsky categories is surprisingly the same: 
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(15) = = = =  =	Z 
	

(To multiply such matrices as in (15) we multiply the entries, in entry-wise fashion.) Z is 
one of the famous Pauli matrices, which has been put to use to predict properties of an 
electron’s angular momentum, in quantum terms. The reasons for that are not important 
now, but they boil down to the fact that Z is what physicists call a Hermitian matrix.  
	

Hermitian matrices are to matrices what real numbers are to numbers. Both can be 
measured. If one wishes to get philosophical about it, Hermitian stuff is what one can 
“pin down”. We will get a feel for that as we get our hands into computations, but we can 
point out the obvious already: the elements in the diagonal in Z are both real numbers. 
These are key in understanding the essence of a matrix, its eigenvalues. The eigenvalues 
of the Chomsky matrices are combinations of ±1 and ±i. It is different for Z, as a result of 
which the matrix has other elegant properties. We can think of Z as a welcome encounter 
arising from the self-merger of the Chomsky objects. At the same time, it is also 
interesting to ponder what we should make of that, especially within in a semiotic system 
that in some sense carries thought, and even allows us to communicate it. 
 

A linguistic system that is trying to start in a self-merger with the math in (15) has to 
resolve that “multiguity”, so that instead of all possible self-mergers leading to Z, the 
system chooses one, any one, to the exclusion of the others. One may think of this choice 
as the core Saussurean arbitrariness in the system, as the choice of any such mapping is 
in principle as good as any other. Thus the right choice is: 
 

(16) N	(understood	as	Chomsky’s	 )	self-merges	as	 	=	Z. 
 

This is a cognitive anchor that we do not (seek to) explain. We make the choice in (17) 
for empirical reasons: we know derivations bottom out as nouns, the one category class 
that can project without dependents. Guimarães proposed self-merger for nouns, not 
surprisingly; the insight was the self-merger, not that it was for nouns.  
 
 
4. Projecting from the Bottom and Selection Restrictions 
 
Once the “human language anchor” in (16) is assumed, things start falling into place, in a 
form that can be summarized in terms of a diagram proposed to us by Michael Jarret, 
which we refer to as the Jarret graph, presented in its abstract version in (17). In this 
graph we need to distinguish operational edges (the Chomsky matrices, all of which are 
presented with a “hat” ^ to signal their operator status) and argumental nodes. Both of 
these are matrices, since these are linear operators that can be operated on, also. But the 
emphasis in each instance is different: while the Chomsky objects with a “hat” are very 
specific, what they operate on is more open-ended: a matrix with the determinant 
signaled in parenthesis, these ranging over ±1 and ±i.  
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(17)  

      
A matrix determinant is another invariant scalar obtained, for simple square matrices, 

by multiplying the items in the diagonal and subtracting from that the product of the 
items in the off diagonal. We propose that the matrix determinant determines what 
linguists call a “category label”, which for the projections we will be operating with are 
the fundamental orthogonal features ±1 and ±i only. In effect, this is a second quantum 
number, together with topological entropy as discussed. We assume that the 
interpretation of determinants as labels are relevant for arguments only, not the operators 
(with a hat in the Jarret graph). The specific labeling system we argue for is: 
 

(18) a.   N projections: label/determinant -1       b. V projections: label/determinant i        
c.   A projections: label/determinant  1       d. P projections: label/determinant -i        
 

The Jarret graph is basically saying that N heads select (multiply with) matrices of type -i 
(the prepositional projections) to yield -1 projections, while P heads, in turn, select 
matrices of type -1 (the nominal projections) to yield -i projections—that being the 
recursive core of the system. In addition, the graph also says that V heads select matrices 
of type -1 to yield i projections, while A heads select matrices of type -i to yield 1 
projections—that being the non-recursive periphery of the first-merge system. This is all 
done in “categorial-grammar fashion”, with the Chomsky operators being (label-less) 
matrices that take matrix arguments to project given results, as in (17).  
 

In addition, the graph has a START point, explicitly signaled in (17). This is the 
anchoring assumption we have argued for. It would be silly for a graph as in (18) to start 
at the peripheral edges, since then the computation has nowhere to go; the core is a more 
useful place to start. But the core itself has two different sites: one labeled -i and the other 
one labeled 1 (that number being a matrix determinant). It is sound to argue, on formal 
grounds alone, that it is natural for the system to start at a state that carries the 
computation to the very elegant Pauli matrix Z, with determinant/label -1. We have 
already shown above how all instances of self-merge, for any of the Chomsky categories, 
yield this result. That being the case, the only matrix that carries the system to the Z 

configuration with determinant -1 is precisely , which we call Chomsky1 (or C1), 
for this very reason. So it is sound for the Jarret graph to start in C1 in formal grounds, 
which we return to. (It is still a substantive claim to postulate that C1 corresponds to 
nouns, which we are adapting from Chomsky 1974 by way of our Fundamental 
Assumption; in other words, the formal system could have just as naturally started in C1 
with us having assigned that matrix to verbs, prepositions or adjectives…) 
 

The other formal properties of the Jarret graph—why the -1 and -i projections are at 
the core, others at the periphery—follow from the results of matrix multiplication over the 
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Chomsky matrices. Specifically, only the following eight results are mathematically 
possible, via multiplication. We have mentioned how, starting on the self-merge of 
Chomsky’s C1 (19e), we obtain Pauli’s Z (19a), with label/determinant -1. We can then 
proceed with the specific options in the Jarret graph. Z can multiply into -C1 (19g) with 
label/determinant -i by -C2 (19h) (staying at the core of the graph), or multiply into -C2 
(19h) with label/determinant i by -C1 (19g) (going into the left periphery of the graph).  
 

(19) a. Z         b. I         c. -Z            d.  -I         e. C1       f. C2      g. -C1       h. -C2 

    ,  ,   ,   ,  ,   ,   ,  .  
 
The same reasoning obtains for the ensuing matrices. For example, the -C1 obtained in 
the previous instance can multiply into -Z (19c) with label/determinant -1 by C1 (19e) 
(staying at the core of the graph), or it can multiply into -I (19d) with label/determinant 1 
by C2 (19f) (going into the right periphery of the graph). Readers can try this as an 
exercise for other states in the graph, and it will become apparent that all the results fall 
within the “1st Merge” Abelian group in (19)—which is commutative for multiplication.  
 

Note that, for each of the lexical projections, there are two equivalent matrix variants 
with the same label/determinant; we call them “twin” projections. The projections are 
equivalent in that the twin matrices share the same determinant, understood syntactically 
as a label. For example, Z and -Z have label/determinant -1 because the determinant is the 
product of the items in the diagonal minus the product of those in the off diagonal—so -1 
in both instances. Readers can check that this is true for all other twin categories in (20). 
 

(20) a.  NP, label -1     b.  AP, label 1            c. VP, label i              d. PP, label -i 
  Z            -Z                I            -I                C2           -C2            C1          -C1           

   ,      ,       , ,   , .  
 
Other matrix multiplications are possible among the eight items in (20); but only those 
expressed in the Jarret graph present this kind of symmetry. Thus, we could have 
multiplied, say, a preposition understood as -C1 (19g) times a verb phrase understood as 
C2 (19f); the result is -I (19d) with label/determinant is 1; but that simply cannot be a 
projection from a prepositional head -C2 with label -i. Readers can try similar 
multiplications off the edges of the Jarret graph, to see how only the connections made 
explicit within it preserve endocentricity/selection in the sense described. 
 

That is what predicts the facts in (12), together with the formal fact that multiplication 
only allows certain results. Had we asked whether we could obtain a projected Z (20a) 
from the last matrix multiplication mentioned in the previous paragraph (-C1 (19g) times 
C2 (19f)), the answer would be no. That is not for substantive reasons as presupposed in 
(18); it follows from assuming a numerical base and elementary multiplications—one 
cannot obtain i from 1x1. Thus there is an important consequence of the numerical 
assumptions we made to substantiate Chomsky’s intuition about the cognitive 
orthogonality of N and V attributes, as well as his general approach to treating categories 



	 11	

as feature matrices, together with interpreting these and their hypothesized elements in a 
mathematical sense: we are now able to predict certain elementary combinations in 
syntax without having to invoke external considerations about other cognitive interfaces.  
 
 
 
4. Topological Entropy within the Jarret graph 
 
We have so far presented two numbers that we think may be relevant to syntax: the 
topological entropy of a phrase maker (analyzed as a matrix), and category labels 
understood as the determinant of the Chomsky matrices, also scalars. Next, we consider 
how to relate such numbers and, in the process, reflect on how they may affect the 
cartography of phrases.  
 

We first map our labels to natural numbers, e.g. as in (4) (or any other combination, 
this bit being arbitrary; readers may wish to try out alternative mappings as an exercise): 
 

(21) a. [1] = 1   b. [-1] = 2   c. [i] = 3   d. [-i] = 4 
 
Initial conditions in syntax (1st merge) exist in the possible multiplications of the four 
types of elements, times any of them (including themselves). In other words, we have, in 
terms of the mapping in (21) so as to get the Medeiros results, the following: 
 

(22) a. 1 x 1 = 1    b. 1 x 2 = 2   c. 1 x 3 = 3   d. 1 x 4 = 4 
     e. 2 x 1 = 2    f. 2 x 2 = 1   g. 2 x 3 = 4   h. 2 x 4 = 3 
       i. 3 x 1 = 3    j. 3 x 2 = 4    k. 3 x 3 = 2   l. 3 x 4 = 1 
     m. 4 x 1 = 4  n. 4 x 2 = 3   o. 4 x 3 = 1   p. 4 x 4 = 2 
 
We may now represent the information in the Jarret graph in (17) as in the following 
rules, each uniquely rewriting a category with the relevant label (matrix determinant), as 
corresponding to the underlined multiplications in (22): 
 

(23) a. [1] ! [i] [-i]        a’. 1 ! 3 4 
    b. [-1] ! [-i] [-i]     c’. 2 ! 4 4   

c. [i]  ![-i] [-1]      d’. 3 ! 4 2 
  d. [-i] ! [i] [-1]      b’. 4 ! 3 2 
 
The rule system in (23) translates into the matrix in (24), per Medeiros’s method. Bear in 
mind that the numbers in the rewrites in (23) correspond, in order, to a matrix column, 
just as the numbers to the left of the arrow correspond to token symbols in a matrix row. 
We have also provided in (24), first, the characteristic polynomial of the matrix, followed 
by its eigenvalues, as well as the matrix determinant, in addition to the entropy ht. The 
reason this quantity is 1 here is because we are applying definition (7), and the largest 
eigenvalue of the matrix (root of the polynomial) is 2, whose binary logarithm is 1.  
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(24)                 x4 – 3x2 - 2x; λ1 = 2, λ2 = -1, λ3 = 0, det.: 0, ht = 1 

                  
 
Now, this is a holistic statement for the entire rule system in (23), signaling the space that 
the Jarret graph covers. When one uses grammatical rules in given sentences, one wants 
to be able to think of each of them separately, to use them in concrete combinations. 
 

Consider, next, the fact that matrix (23) is the sum (in entry-wise fashion) of four 
separate matrices, each of which we can represent separately as in (25): 
 

(25) a.   [1] ! [i] [-i]  or   1 ! 3 4            x4,   λ1 = 0, λ2 = 0, λ3 = 0; det.: 0, ht = -∞ ?? 

        
 

 b. [-1] ! [-i] [-i] or  2 ! 4 4         x4;  λ1 = 0, λ2 = 0, λ3 = 0;  det.: 0, ht = -∞ ??                                                                          

           
 

 c. [i]  ![-i] [-1]  or 3 ! 4 2         x4; λ1 = 0, λ2 = 0, λ3 = 0; det.: 0,  ht = -∞ ??  

         
 

 d. [-i] ! [i] [-1]  or  4 ! 3 2          x4    λ1 = 0; λ2 = 0, λ3 = 0,   det.: 0, ht = -∞ ?? 

       
 
Thus seen, these separate matrices (which collectively aggregate to (24)) are in a sense 
degenerate, as their repeated zero eigenvalues show us. It is instructive to examine the 
topological entropy in each of these matrices. For that, bear in mind that log 0 is 
undefined (one cannot get zero by raising anything to the power of anything). At best, 
zero can only be approached using an infinitely large and negative power. This means 
that, for the separate Medeiros matrices in (25), either there is no way to define ht or it 
hits some absurd infinitude. This arguably corresponds to the fact that there is no growth 
in the systems as represented in (25): a single rewrite terminates the process.  
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But we can also consider the rules in (25) in binary combinations, as follows (where 
the a-a’ rules and b-b’ rules are applied in combination in any given system): 
 

(26) a.  [1] ! [i] [-i]  or    1 ! 3 4           x4,   λ1 = 0, λ2 = 0; det.: 0, ht = -∞ ?? 
a’. [-1] ! [-i] [-i] or  2 ! 4 4 

      
 
b.  [i]  ![-i] [-1]  or 3 ! 4 2  x4-x2; λ1 = -1, λ2 = 1, λ3 = 0, λ4 = 0 ; det.: 0,  ht = 0 
b’. [-i] ! [i] [-1] or 4 ! 3 2           

      
 

(27) a.  [1] ! [i] [-i]  or   1 ! 3 4            x4,   λ1 = 0, λ2 = 0; det.: 0, ht = -∞ ?? 
a’. [-i] ! [i] [-1]  or  4 ! 3 2           

      
b.  [-1] ! [-i] [-i] or  2 ! 4 4         x4,   λ1 = 0, λ2 = 0; det.: 0, ht = -∞ ?? 
b’. [i]  ![-i] [-1]  or 3 ! 4 2  

      
 

(28) a.  [1] ! [i] [-i]  or   1 ! 3 4            x4,   λ1 = 0, λ2 = 0; det.: 0, ht = -∞ ?? 
a’. [i]  ![-i] [-1] or 3 ! 4 2          

      
b.  [-1] ! [-i] [-i] or 2 ! 4 4  x4-2x2; λ1 = -√2, λ2 = √2, λ3 = 0, λ4 = 0 ; det.:0, ht = 1/2 
b’. [-i] ! [i] [-1]  or  4 ! 3 2           

      
 
Most of these combinations still yield undefined results. However, two rule combinations 
produce sensible topological entropies: (26b/b’) and (28b/b’), repeated below: 
 

(29) a. [i]  ![-i] [-1]    x4-x2; λ1 = -1, λ2 = 1, λ3 = 0, λ4 = 0 ; det.: 0,  ht = 0 
b. [-i] ! [i] [-1]    [i.e. VP !  V NP, PP !  P NP]        
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(30) a. [-1] ! [-i] [-i]   x4-2x2; λ1 = -√2, λ2 = √2, λ3 = 0, λ4 = 0 ; det.:0, ht = ½ 

b. [-i] ! [i] [-1]    [i.e. NP !  N PP, PP !  P NP]               
 
What could those topological entropies actually mean for our derivations?  
 
 
 
5. Building Cartographies based on our Quantum Numbers 
 
The fact that the rule combinations in (29) and (30) yield meaningful entropies ought to 
indicate that these particular rules act well in tandem. (Note: for polynomial x4 – x2, 
whose highest eigenvalue is 1, the log is zero, while for polynomial x4 – 2x2, whose 
highest eigenvalue is √2, the binary log is ½.) This is certainly the case for the rule 
system in (30), which corresponds to the iterative core of the Jarret graph. This is what 
allows even first-merge to recur, into “tail recursion” sequences of the sort in (3`): 
 

(31) … stories from rumors about pictures of NYC 
 

As for rule system (29), it contains the “skeletal” rule VP ! V NP, which allows us to 
articulate clauses. If we had to choose our rules intuitively, one would have precisely 
chosen (29) as the most important in terms of “what a sentence boils down to,” and (30) 
as “what allows the system (of first merge) to recur.” Again intuitively, one would expect 
the rule AP ! A PP to be secondary in some sense, merely intended to add qualifiers to a 
noun phrase (or perhaps a verb phrase in the form of adverbs). It is interesting that, in all 
rule combinations in (26)/(28), instances involving that rule (namely, (26a), (27a) and 
(28a)) yield undefined topological entropy, as if such a rule didn’t participate at all in the 
overall growth of this system. None of those seem like accidental results.   
 

Whether those intuitions can be translated into a formal system depends on precisely 
how we use topological entropy, substantively. In its original conception within symbolic 
dynamics, this measure seeks to identify whether types of symbols exist within a system, 
and what that tells us about its periodicities. We are pushing the boundaries of the notion 
when we apply it to the Medeiros translation, which keeps track not just of types, but 
actually also token uses of particular symbols in given contexts—this is how we got our 
2’s, indicating the repetition of a given token symbol. It is not accidental that the rule 
combination above that has the highest topological entropy is rewriting a symbol as two 
tokens of a type. Note: that rule, in itself, does not yield a meaningful entropy when 
combining with any of the others—just when it combines with the counterpart that closes 
an iterative cycle in the first-merge system. That is what gives the system its growth, so it 
is well that the topological entropy should be sensitive to such a nuance.  

 
It is probably also not accidental that the rule that results in inconsequential or no 

growth happens to be the one that, in matrix terms, involves the identity matrix as a result 
(now speaking from the point of view of the determinant/labels). We do, of course, want 
to be able to introduce adjectives and adverbs into the system, but it is also intuitively 
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clear that they do not constitute a structural portion that adds structural weight in any 
sense: they are optional, a zero-sum gain in most instances, as a consequence of which 
one can also add them indefinitely without essential grammatical functions being 
affected. It is arguable that the undefined topological entropy may be tapping into just 
these matters: adding these “adjuncts” simply has no consequence for the system, so their 
topological entropy is not defined.  

 
As for the skeletal rule that combines verbs and noun-phrases yielding zero entropy, 

this too makes sense in that we don’t want recursion in the system to be in the skeleton, or 
its growth would be unwieldy. That component of the structure is surely central, and 
obviously not a zero-sum gain as in the adjunct instance. Then again, while adding more 
and more prepositions and nouns to the “tail recursion” in (31) doesn’t change the 
fundamental character of, say, a transitive structure (i.e. embedding successively longer 
versions of (31) under some verb or another, we still have a simplex verb phrase), adding 
more verbal structure to any simple transitive situation, like eat beans, drastically 
changes the structure in familiar grammatical terms (e.g. as in try to eat beans).  

 
Nothing in what we have said formally has these intuitions encoded into a system 

where, for example, the cartographic idea that sentences are built around verb phrases is 
captured. That, in turn, presupposes, in the broad terms of Hale & Keyser, that 
derivations start in noun phrases (directly as verb complements, indirectly as 
prepositional complements that end up integrating some verb phrase). Given topological 
entropies as in (29)/(30) (the only meaningful ones for instantiations of (25) into non-
holistic rule combinations), this may be a consequence of assuming “information 
gravity”, which recalls the idea that most of the mass in a physical atom is in its nucleus:  
 

(32) The derivation starts at its most (topological) entropic state.   
 
This, if true, is a substantive use of the notion of topological entropy that is not formally 
necessary—and a way to relate that scalar to our other scalar (the label understood as a 
determinant). Evidently if a derivation has to choose among the rule combinations 
corresponding to the ensemble in (24) (the Jarret graph in matrix form) that have a valid 
topological entropy, (32) forces it to pick a start point in the rule combination in (30), the 
one with the highest topological entropy.  
 

That is consistent with the START point in the Jarret graph in (17), although it 
doesn’t, in itself, remove the anchoring stipulation of associating the ideal initiation of 
the derivation with the self-merger of nouns. This is because what is driving the higher 
entropy of the system is the use of a rule system that rewrites a symbol as two identical 
tokens of the same type (our 2 in the matrix). Now just as we have chosen to associate 
that formal state of affairs with the NP, we could have associated it, equally arbitrarily, to 
any other substantive category. To be sure, then all familiar combinatorics would fall 
apart—but that is an empirical argument, not a formal one. It could be that an alien 
language is built around the VP in just those terms, just so as to articulate denotations 
around actions, with recursion of those in first merge terms vis-à-vis some applicative 
element, and all of that terminating around a skeletal nominal. Not human language, but a 
language that could use every formal nuance we have proposed. 
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Conceptual (stipulative) anchorings aside, (32) is interesting in its own right. First, it 

is a general statement, which one can falsify elsewhere in the world of derivations. That 
part is not blamed on an interface with the rest of cognition, which boldly entails, if true, 
that different creatures with a different cognition—if they abide by the same sorts of 
formal entities (and these map per the Medeiros method of encoding L-systems in 
general)—would also have to start their derivations where the Jarret graph indicates.  

 
Second, if (32) is meant literally, the only way to make sense of the quantifier within 

it is in numerical terms, like those provided by ht. Note that we couldn’t have applied ht 
to the Chomsky matrices. This is because those matrices have imaginary values, so they 
may not have a highest eigenvalues at all. But ht works just fine for the Medeiros 
matrices. Just as the “label” quantum number allows us to discuss selection issues as 
above—sieving through the multiplications in (22) to converge in those grammatical 
options that the Jarret graph instantiates—so too the “entropy” quantum number allows 
us to prevent certain grammatical combinations. It already did in the form in (32), 
situating the “nucleus” of a derivation in its verb phrase, built around its nominal 
complement. But we can push that idea forward if we strengthen (32) with (33): 
 

(33)  The derivation ends at its least (topological) entropic state.   
 

Of course, we need to beef (33) up by introducing functional categories, as well as the 
effect of movement in the system (which ought to distribute entropy through chain links). 
But it should be clear that doing so ought to help us in specifying familiar tendencies 
within the cartographic program, like “heavy” verbs existing configurationally lower than 
“light” verbs, etc. In a sense, the joint action of (17)/(33) should be seen as a way to seek 
dynamical equilibrium in the derivation, which ought to relate to its phases. 

 
The latter point is at the core of topological entropy, a notion that works in any 

dynamical system, highlighting its (quasi-)periodicities related to its derivational 
dynamics. If topological entropy is the way to articulate the Cartographic Program, it is a 
consequence that it should, in the process, signal the system’s cycles/orbits. Again, this is 
not a specifically linguistic requirement, which connects it to other system’s presenting 
Dynamical Frustration, in Binder’s (2008) sense: in any such system (quasi-)periodicities 
are the function of the system’s topological entropy. 
 
 
6. The Explosion Problem with Specifiers and the Need for Matrix Compression 
 
We came to these matters through an attempt to crack the chain nut in a rigorous way, 
which we want to sketch also. Just as we have proposed matrix multiplication for first 
merge, we propose another kind of product for other forms of merge beyond the initial 
conditions—those in which both seeking-to-merge items are complex, having lived a rich 
derivational life (instead of coming from the lexicon). Tensor products have the effect of 
concatenating two matrices into a larger one. This is useful in “building structure” for 
that very reason. Whereas regular matrix multiplications do not preserve structure (once 
modified, a linearly altered structure could have come from different multiplications), 
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tensor products are structure-preserving: by looking at a tensor product, we know what 
went into it. For this reason, while matrix multiplication retains the dimensionality of its 
factors, tensor products generally have a dimensionality that grows upon obtaining.  
 

The dimensionality of the matrix is its number of rows and columns—the information 
that takes to specify it. The inner dimensionalities of matrices determine what sorts of 
operations are allowed among them. For example, only matrices of identical inner 
dimensionalities can be added/subtracted, and only a matrix A with the same number of 
rows as the number of columns as a matrix B can enter into a matrix multiplication A B. 
For the objects in the Abelian group in (20), multiplying its members times any other does 
not change the dimensionality of the factors: the result is of the same dimensionality of 
each of the factors—otherwise (20) would not be a group. But this does not happen when 
we invoke a tensor product concatenating two matrices. The dimensionality of a matrix 
thus originating is the product of the dimensionalities of the factors. 

 
(34) a.                                                             b. 

			 ⊗ =	 																				 ⊗ = 	
 
Had (34a) been matrix multiplication involving the identity matrix I, the result would be 
identical (in dimensionality and everything else). Because this is a tensor product, even if 
it involves the identity matrix, the result is quite different. It preserves the shape of the 
second factor, precisely because it involves I. That said, it is obvious that the output is a 
4x4 matrix. Moreover, by looking at the output we know that it must have originated in 
the product to the left, in this sense the tensor product being structure preserving.  
 

We take the grammar to use structure-preserving tensor products to generate genuine 
phrase-to-phrase mergers (as opposed to “lexically more drastic” head-to-phrase 
conditions). This has vast consequences. To see this issue right away and more 
concretely, let’s say that the way we generate (35a) is by the tensor product of children’s 
and pictures of NYC. This should be possible regardless of whether the genitive is 
complex as in relatives of children’s, as seen in (35b), since a phrase like that would fall 
into the characterization in (35a). But what about women’s children’s pictures of NYC? 
 

(35) a.  Children’s pictures of NYC.  
     b. Relatives of children’s pictures of NYC. 
   c. Women’s children’s pictures of NYC.  
   d. London’s women’s children’s  pictures of NYC. 
 

In (35c) we have a specifier (women’s) within a specifier (children’s). So if each 
elsewhere merger, going beyond the initial head-complement relations, is supposed to 
invoke tensor products, and the tensor products’ dimensionalities are the products of the 
dimensionalities of its factors, the dimensionality of women’s children’s pictures… 
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should be equal to that of children’s pictures times that of women’s. This can then go on 
into London’s women’s children’s pictures… as in (35d) and so on—indefinitely. We call 
this the Explosion Problem, the solution of which tells us something extremely 
interesting about the nature of specifiers.  
 

The general approach to such problems of dimensionality is matrix compression, 
based on dimensional reduction. What we seek for that purpose is matrix results where 
entire rows or entire columns reduce to zero, thus could be eliminated. These are 
matrices with zero eigenvalues, thus presenting a kind of inner symmetry. For our 
“Magnificent Eight” objects in (20) (the Chomsky matrices and the Pauli matrix ±Z and 
the identity matrix and its inverse ±I), the following statement is always formally true: 

(36) The diagonal elements are the polynomial roots and matrix eigenvalues.  

Consider these formal conditions for those Magnificent Eight: 

          Matrices: 
Properties 

Z	=  -Z	=  I =  -I	=  
Char. polynomial x2	–	1																								 x2	–	1																								 x2	–	2x	+	1																 x2	+	2x	+	1																	 
eigenvalues 1, -1 -1, 1 1, 1 -1, -1 
determinant -1 -1 1 1 
trace 0 0 2 -2 

Table 1: Algebraic properties of the Pauli matrices within the Magnificent Eight. 
 
          Matrices: 
Properties 

C1=  -C1=  C2=  -C2	=  
Char. polynomial x2	–	(1–	i)x	–i													 x2	-	(-1+	i)x	–	i								 x2	–	(1+	i)x	+	i x2	-	(-1-	i)x	+		i										 
eigenvalues 1, -i -1, i 1, i -1, -i 
determinant -i -i i i 
trace 1–	i -1+	i 1+i -1-	i 

Table 2: Algebraic properties of the Chomsky matrices within the Magnificent Eight. 
 

The notion trace in these tables has nothing to do with syntactic traces: a matrix trace 
is just the sum of the elements in its diagonal, another number. We can now speak 
rigorously about these matrices. For example, the Pauli matrices are different from the 
Chomsky ones in that all the eigenvalues of the first are real—not all the eigenvalues of 
the second. We call Hermitian those matrices whose eigenvalues are real, so now we 
know that Chomsky’s matrices are not Hermitian. Observe, also, putative unifications 
across categories. We have already observed how the positive and negative versions of 
the “twin” categories share the same determinant. But there are more generalizations of 
interest. Note that only ±Z presents the same characteristic polynomial x2	–	1 (all other 
matrices in the Magnificent Eight have different characteristic polynomials). Now that is 
a specific sense in which ±Z is the most elegant among the Magnificent Eight: aside from 
being Hermitian, it has a unified characteristic polynomial, a unified trace, and a unified 
determinant—which no other matrix in the group does.  
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Considerations about characteristic polynomials, eigenvalues, and so on, obtain for all 

square matrices, not just our Magnificent Eight. This is important when considering these 
architectural issues from a broader perspective. To begin with, Pauli’s ±Z is only one of 
three Hermitian matrices within Pauli’s Group of matrices, which includes also ±I and 
imaginary versions of all these matrices. It turns out that when we multiply any of the 
non-diagonal matrices in Pauli’s Group by any of the Chomsky matrices, we end up in 
another group of 32 matrices that we have called the Pauli/Chomsky Group. This group is 
extremely interesting, since it allows us to systematically explore a corresponding Hilbert 
space where specifier relations live and can be superposed into chains. Moreover, the 
group gives us nothing short of a periodic table of syntactic elements: the Magnificent 
Eight (lexical projections) and corresponding functional projections with well-behaved 
characteristics of the sort studied in the previous section (some will have unified 
polynomials, not all; some will be Hermitian, not all; some will be unitary, not all, etc.).  

 
The research program is then clear: 

 
(37) A. To find out how the functional categories (Infl, Comp, v, etc.) relate to 

their lexical categories and to one another in a principled fashion.  
B. To determine how this group of 16 twin projections constitute the basis 

for standard syntax, in terms of their multiplications and tensor products. 
C. To understand which of the tensor products among the categories in the 

periodic table lead to compressible results. 
D. To figure out how the tensor products sum with one another into chain 

dependencies, and which among those present separable contexts. 

Now, just as the formal tools above show us in what sense the Pauli/Chomsky 
matrices are elegant, contributing to their distribution in syntax, or to what degree they 
are measurable, they also allow us to understand how dimensions can be reduced after 
they have grown due to a tensor product. In this regard, it is useful to emphasize that our 
matrices have a dimensionality equal to their non-zero eigenvalues. So a non-
compressible 4x4 matrix has four substantive eigenvalues, whereas a compressible 4x4 
matrix has as many zero eigenvalues as matrix dimensions are irrelevant to it.  
 

To cut to the chase, Hermitian matrices like ±Z have a different effect on what they 
operate on than the other matrices in the Pauli/Chomsky group. In a nutshell, tensor 
products involving ±Z are reducible in dimension in a way that is not generalizable to the 
other matrices. When externally multiplied by any of the other (non-Hermitian) matrices 
through a tensor product, the overwhelming majority of the matrices in the 
Pauli/Chomsky group yield results that are “allover the place”. Basically, only the 
Hermitian matrices with a unified characteristic polynomial like ±Z are well behaved. 
 

While tensor products involving the Hermitian matrices have the neat effects just 
described, in-and-of-itself that doesn’t result in the required reduction of matrix 
dimensionality. At the same time, because of their intrinsic neatness, it is not difficult to 
find situations in which we can add matrices—as we saw already when we discussed the 
Medeiros matrices in (24)/(25)—of a specific sort to others that are “complementary”, in 
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the sense of allowing us to eliminate some of these eigenvalues. In (39), the 
specifications corresponding to the sum in (38), we clearly have a dimensional reduction, 
for the ensuing matrix has two zero eigenvalues. What took us to the dimensional 
reduction is the complementary neatness that went into the summed matrices, which 
manifests itself on the fact that the determinant and trace (in the matrix sense) of the sum 
is zero, as a consequence of which the characteristic polynomial is simplified to x4 + 2i 
x2. (For diagonal square matrices, the determinant amounts to the product of the 
eigenvalues, while the trace boils down to the sum of the eigenvalues.)  
 

(38) a.      +      =    

b.       +        =     
 

(39) dt.: 0, tr.: 0; char. pol.: x4 + 2i x2; eigenvalues:  (-1+ i),  (1 - i), 0, 0.    
 

 
7. Chains and Beyond… 
 
The importance of the foregoing exercise is to prepare the ground for the operations that, 
in conditions of superposition (sums) as in (38)/(39), may lead to different chain 
collapses. This is the crux of the idea: chains exist, prior to being observed, in 
superposed states. At the observation point, if at all possible, they materialize, with some 
probability, in one of those states, which thus becomes observable.  

 
There are very well understood properties of superposed states that, in principle, 

allow for their separability, for instance when they are orthogonal to start with (with 
regards to some orthonormal basis). The situation is all or nothing: if the states are 
orthogonal, the separation, in the right conditions, is inevitable; if they are not 
orthogonal, the separation is impossible. Moreover, there is no such thing as being 
observable in multiple states at the same time, much as there is meaning to the states all 
existing simultaneously. This is what moves us in this formalism. 

With Chomsky (1995), we take a chain to be an {{α, Κ}, {α, Λ}} object, where a 
specifier α moves from context Λ to context Κ. Since we are modeling specifiers by 
tensor products, we can then take the chain to be the sum: 

(40) a. [α ⊗ Κ ] + [α ⊗ Λ] = α ⊗ [Κ + Λ]   
            b. [Κ ⊗ α] + [Λ ⊗ α] = [Κ + Λ] ⊗ α 

To say α separates from these superpositions is to say one can “factor out specifier α” 
from the relevant tensor products, as in the right-hand side of the equations in (36). So the 
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chain, in a deep sense, links the contexts of each of its occurrences, Κ and Λ. After 
“factoring out” the separable element α, what remains is the superposition [Κ + Λ].  

Here is the key, now: if the superposed contexts are mutually orthogonal, we can 
apply to such complementary conditions the standard logic in quantum mechanics. 
Basically, when the relevant system is measured, it has 50% probability of being 
observed in the Κ configuration and 50% probability of being observed in the Λ 
configuration. If we suppose that the linguistic way of observing its abstract 
representations is by sending them to relevant interfaces, within those representations we 
can say that chain {{α, Κ}, {α, Λ}} collapses at either configuration Κ or configuration 
Λ, with equal probability. That is our approach to “reconstruction” effects. 

Of course, we have to make precise what we mean by “orthogonal”, or “maximally 
different” within an orthonormal basis. The following is the standard approach: 

(41) Two vectors x and y in vector space V are orthogonal if their inner (scalar) 
product is zero.  

A convenient way to define the scalar product between two matrices is as in (42), where 
tr. again represents a matrix trace—our third scalar discussed above: 

(42) <A|B> =  tr(A† B) 

Where, for ket |A>, A’s conjugate adjoint A† is the bra <A|.  

Here we are using a vector notation introduced by Paul Dirac for notions discussed above 
already. What (41)/(42) boil down to is that we take two matrices A and B, understood as 
vectors, to be orthogonal if and only if the trace of multiplying A’s adjoint A† times B is 
zero. Because we have the Pauli/Chomsky group to work with, determining this, which in 
Dirac’s shorthand is <A|B>, is relatively simple: we just need to churn the calculations.  

The points to take home are straightforward. First, this is supposed to work with the 
very same types of conditions and reasoning as it does in quantum physics. The issue is 
not really whether the computations are wrong (they aren’t), but rather whether they are 
meaningful. To decide on that depends on whether we have alternative theories of chain 
reconstruction effects and the like, and if so, whether such alternatives fare better on 
empirical grounds. Our attempt here is simply to show how things work in our terms.  

Second, there is very little leeway for messing with the formalism. If “collapses” are 
meant seriously, they take place in a Hilbert space along the lines of what is guaranteed 
by (41)/(42) in the context of something like the Chomsky/Pauli group. In particular, if 
two matrices come out as orthogonal by the definitions we are introducing, they cannot 
be “quasi-orthogonal” or “orthogonal up to speakers’ intuitions”, and so on. One could, 
of course, change the definition of the inner/scalar product in (42), and then different 
things would be orthogonal. Or reject the Pauli/Chomsky group as the locus for all of 
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this, and then perhaps in a different realm other things would be orthogonal. But in the 
scenario we are presenting there are no alternatives.  

Third broad point to bear in mind: let’s not loose track of the fact that we are 
attempting to kill several birds with the same… chain. At the very least we want to 
address the Compression Problem for specifiers. This is to say that we are not just after 
“reconstruction effects” for chain occurrences. While that is what has motivated the 
program, once we invoke matrices, groups, Hilbert spaces and so forth, one hopes that all 
of that doesn’t amount to mere paraphernalia to address the technical problem of 
occurrences. For us, chain occurrences are interesting inasmuch as they touch on all these 
other issues, taking us from humble phrases to complex long-range correlations. 

To be sure, chains are not the only long-range correlations that grammars present: 
there is obligatory and non-obligatory control, ellipsis of various kinds, binding and 
obviation effects, and much more. We have the sense that treating these matters within a 
Hilbert space of relations is promising, particularly when, beyond the superpositions just 
discussed, such system a fortiori involve entanglements. Basically, whatever doesn’t 
separate is entangled, so there is plenty of room to explore what happens beyond the core 
situation in (37) and (38). Space/time considerations prevent us from doing so here and 
now, though we admit we plan to get all entangled on such a task in the immediate future. 

One last point is worth emphasizing: much of what we have said above would not 
make (non-metaphorical) sense without the use we have made of scalars of different 
kinds. We have shown the role played by both topological entropy and label/determinant 
scalars. We have just alluded to the important role of matrix traces—another scalar—in 
determining the inner product of our Hilbert space. (We could also show how traces in 
the Pauli/Chomsky matrices help us separate substantive categories from grammatical 
ones.) Moreover, the logic of chain collapses as sketched ultimately depends on 
Heisenberg’s Uncertainty Principle and the wave/particle duality that it formulates. That 
very logic requires a “lower boundary”, usually expressed in terms of Planck’s famous 
constant—at any rate, a non-zero real number. That apparatus has to be numerical, 
indeed real in the technical sense. No real numbers, no syntax as we have examined it. 
We could of course be wrong in our analyses, but if we are not, they provide bona-fide 
arguments that “mind phenomena” require real quantities as they materialize, enough at 
least to show up with coherent patterns as examined here. 

We are not the first to have argued that the human lexicon is a Hilbert space, or that it 
is best to treat minimalist and other grammars as vector spaces. We have the feeling, 
however, that we are the first to have “gone quantum” by way of taking very seriously 
our linguistic fundamentals (the division into nouns, verbs, adjectives and adpositions, 
the role of structure, selection and endocentricity, within phrases, standard cartographies 
and cycles/phases, etc.). This is a sense in which our approach is as conservative as it is 
radical. We have shown how a Hilbert space can be constructed from assumptions that 
our undergraduates are exposed to. The only twist we have added is to interpret familiar 
conceptual orthogonalities in mathematical terms, which we have found worth studying. 
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